
Advances in Computer Science and Information Technology (ACSIT)
Print ISSN: 2393-9907; Online ISSN: 2393-9915; Volume 2, Number 11; April-June, 2015 pp. 12-15
© Krishi Sanskriti Publications
http://www.krishisanskriti.org/acsit.html

UPD- Static Priority Real-Time Algorithm for
Multiprocessors based on RM

Faiyaz Ahmad1 and M. Nauman Siddique2

1,2Department Of Computer Engineering, Faculty of Engineering & Technology, Jamia Millia Islamia New Delhi -25, INDIA
E-mail: 1ahmad.faiyaz@gmail.com, 2naumansiddiqui4@gmail.com

Abstract—In past few years the real time systems have seen a shift
from uniprocessors to multiprocessors. Uniprocessors have optimal
algorithms RM, EDF and LLF but these algorithms prove to be
suboptimal for multiprocessor real time systems. Multiprocessor
real-time systems require optimal algorithms to meet their logical
correctness in constrained time.
Several algorithms have been proposed based on RM, EDF and LLF
in past few years. In this study, we propose UPD based on RMZLPD
and RM. Through simulation, UPD has shown high success ratio and
schedulability ratio gain over its predecessors. UPD being a static
priority algorithm aims at meeting the deadlines of high priority tasks
even under overloaded conditions. UPD has better success ratio and
schedulability over algorithms taken for consideration.

Keywords: real- time scheduling algorithms, RMZLPD, UPD, CPU
Utilization Rate, success ratio, schedulability

1. INTRODUCTION

The basic characteristic of a real time system is logical
correctness in constrained time. A time – critical task has a
predefined deadline. The scheduling algorithms specify the
order in which the tasks are to be executed. Time-critical tasks
are periodic and need to be completed before its deadline is
reached. They are independent and do not depend on any task
for initiation and completion. [2]

Based on scheduling table and schedulability analysis, real
time systems are –Dynamic and Static Real Time Systems.
Dynamic real time systems assign priorities to tasks on any
criterion while static real time systems have user defined
priority. Based on the preemption of tasks, real time systems
are–Preemptive and Non-Preemptive Real Time Systems.
Preemptive real time systems allow the lower priority tasks to
be preempted for any higher priority tasks. Non-preemptive
real time systems do not allow preemption of tasks until they
are finished. [3]

Multiprocessors real time systems are divided in two
paradigms – global scheduling and partioned scheduling.
Global scheduling allow tasks to run on any processor without
any processor affinity while in partioned scheduling tasks run
on the processors assigned to them beforehand. Partioned
scheduling is relatively easier to implement but global

scheduling has better resource management and is more
robust.[1] The task distribution for partioned systems are
usually done manually or by non-optimal heuristic
techniques.[5] When tasks are partioned and scheduled they
are more prone to unbalanced load distribution and have
higher preemptions than a globally scheduled system.[4]

It has been proved that the tasks systems that are schedulable
under partioned approach are not mandatory to be schedulable
under global approach. Also, the task systems that are
schedulable under global approach cannot be partioned into
subsets. [6]

We propose global static scheduling algorithm using the
concepts of RMZLPD [1] and RM. RM schedules tasks with
least response time but we consider CPU Utilization Rate over
response time and draw the concept of pseudo-deadline from
RMZLPD. In our study we assume that processes with higher
utilization rate are of high priority and need to be completed
before its deadline over other low priority tasks. The tasks
with high priority have hard pseudo-deadline requirements so
as not to miss their deadline by any chance but the tasks with
low priority have soft pseudo-deadline and can miss their
deadline at the cost of any high priority task.

2. SYSTEM MODEL

We consider periodic tasks τ1 , τ2 ………τn of the form τi= (Ci

,Di) where Ci denotes computational cost of the deadline of
the task and Di denotes the deadline of the task. The CPU
Utilization Rate of a task is calculated by Ui= Ci \ Di where i=
1 to n. The system utilization rate is calculated by U=Ʃτk

τn
Uk/m where m denotes the number of processors. For a task
set to be schedulable, U must be less than or equal to 1.

3. RELATED WORK

RM (Rate Monotonic)

RM is global preemptive fixed priority scheduling [1]. RM
assigns high priority to tasks with lower computation cost than
tasks with higher computation cost. The task with shortest
computation cost is scheduled first.

UPD- Static Priority Real-Time Algorithm for Multiprocessors based on RM 13

Advances in Computer Science and Information Technology (ACSIT)
Print ISSN: 2393-9907; Online ISSN: 2393-9915; Volume 2, Number 11; April-June, 2015

Theorem 1: If U ≤ n (21/n -1), n independent periodic tasks can
be scheduled by RM.[2]

In theorem 1 when n→∞, U≈ 0.693.This implies the
maximum CPU Utilization Ratio of RM is 69.3. When the
load is greater than U, RM cannot schedule those tasks. RM is
an optimal algorithm for uniprocessor systems but not for
multiprocessor systems. The advancements made in the
algorithm for increasing U are sub – task method and dual –
priority method.

Sub-Task method: Tasks are divided into consecutive sub –
tasks. Every sub – task has its own priority and their priorities
are non – descending. In this method the task that initially had
low priority will gain a higher priority after certain time
periods due to the execution of the other high priority tasks.
[7]

Dual – Priority method : Period of the tasks are divided into
two stages which has a different priority .Similar to sub- task
method it is possible that the lower priority task in its second
stage could preempt the task which has the higher one.[8]

RMZL

RMZL is based on RM with an additional feature of zero
laxity. In RMZL, jobs are scheduled in accordance with fixed
priority of their associated tasks, until a situation arises where
the execution time of a task is equal to the time of its deadline.
A job with zero-laxity will miss its deadline unless it executes
continuously till completion.[1]

RMZL has work conserving and domination property. Work
conserving property means the processor never remains idle as
long as jobs are in the ready queue. Thus, maximizing the
average response time of the system. Domination property
states that RMZL has all the properties of RM in normal
circumstances but overrides them once zero laxity occurs. [10]

RMZL gives higher priority to tasks with zero-laxity. The task
scheduling in RM and RMZL are identical until a zero-laxity
job arrives. This shows that RMZL is superior to RM as it can
schedule tasks feasible by RM and also schedule tasks with
zero-laxity.

EDZL

This algorithm uses EDF as long as no zero – laxity tasks
occur. When a task with zero laxity occurs, it preempts the
task with higher deadline amongst the currently executing
tasks. When a tie occurs choose the task with lowest
computation cost. [9]

LP-RMZL

LP-RMZL is based on RMZL. In LP-RMZL the tasks with
higher priority cannot preempt a task of lower priority except
for by the zero-laxity tasks. This implies a task once assigned
processor cannot be preempted until a zero-laxity task arrives.
LP-RMZL has lower task switching and better success ratio
than its predecessor RMZL. [1]

RMZLPD

RMZLPD adds an additional feature of pseudo-deadline to
RMZL. In RMZLD, tasks are scheduled according to RMZL,
until a situation arises where the remaining pseudo execution
time of a job is equal to its pseudo deadline. Such a job has
pseudo zero laxity and will miss its deadline unless it executes
continuously to its pseudo deadline. [1]

RMZLPD gives semi highest priority to jobs with pseudo zero
laxity until its deadline. Pseudo deadline is calculated by
setting the deadline to its half. RMZLPD has higher
schedulability ratio over its predecessors.

Pseudo deadline = Deadline \ 2

Half Execution Rate = Computation \ 2

4. PROPOSED ALGORITHM

 UPD

We have proposed an algorithm UPD CPU utilization based
pseudo deadline algorithm. Under UPD jobs are scheduled
according to their CPU utilization rate, until a situation arises
where the remaining execution time of the task is equal to the
time of its deadline. Such jobs having zero laxity will miss
their deadline if they are not granted CPU execution time.
UPD calculates pseudo deadline equal to half of its deadline.
A task with high CPU utilization rate is given higher priority
over lower priority tasks. Now to avoid lower priority tasks
missing their deadline, they are given high priority as soon as
they reach their pseudo deadline over all other high priority
tasks. Tasks having equal CPU utilization rate are resolved by
assigning high priority to tasks having lower deadline values.

Algorithm for calculating Pseudo Deadline

 Input: Tasks in the form (Ci ,Di)
Output : Pseudo Deadline and Half Execution Rate for

tasks
If(Deadline is odd for a task)
{
Pseudo-deadline = (Deadline / 2) +1
Half execution rate at Pseudo-deadline = (C /2)+1
}
Else
{
Pseudo-deadline = (Deadline / 2)
If(Computation cost is odd)
Half execution rate at Pseudo-deadline = (C /2)+1
Else
Half execution rate at Pseudo-deadline = (C /2)
}

Faiyaz Ahmad and M. Nauman Siddique

Advances in Computer Science and Information Technology (ACSIT)
Print ISSN: 2393-9907; Online ISSN: 2393-9915; Volume 2, Number 11; April-June, 2015

14

Algorithm UPD

While (True)
{
If(Clock = 0)
Schedule m tasks with highest CPU Utilization Rate
Else
{
if (Pseudo-Deadline for any process = Clock)
Schedule it replacing it with current active processes
If(Half Execution Rate for currently active processes = 0)
Schedule the next highest priority task
Else
Exhaust the clock cycle by the currently active processes
}
}

5. EXPERIMENTAL SETUP

We describe the overall structure of our experiments. We have
chosen RMZL, LPRMZL and RMZLPD as the algorithms
under consideration. We simulate each algorithm for obtaining
success ratio and schedulability rate for the tasks sets provided
to them and comparing these results with those of UPD. For
each consideration we take 1000 randomly generated task sets
having CPU utilization rate lying in range of (0, 1) and to have
multiprocessing effect we execute it simulating 4 processors.
Each task has its computation cost and pseudo deadline
values. We compute CPU utilization rate of each process and
schedule them on the basis of their priorities. For simulation
results we have considered the interval of CPU Utilization
Rate [0.4 , 1) with a step size of 0.04 because from 0 to 0.4 the
algorithms considered did not show deviation from normal,
proving fruitless for our experimental result. But for intervals
0.4 to 1 we can see the deviations in the graph of algorithms
under consideration in our simulation results.

6. RESULTS

Fig. 1: Result of Success Ratio

We have simulated the randomly generate task set on RMZL,
LPRMZL, RMZLPD and UPD. The tasks sets in RMZL were
scheduled similar to RM except when any zero laxity error
was encountered. The tasks in LPRMZL were scheduled
similar to RMZL and the tasks couldn’t be preempted until a
zero laxity task. RMZLPD scheduled the tasks similar to
RMZL to meet their pseudo deadlines.

Fig. 2: Result of Schedulability

Tasks under UPD were scheduled on the basis of their CPU
Utilization Rate. The initial step was to calculate the pseudo
deadline of each task. The tasks with deadline in even clock
cycles had their pseudo deadline and half execution rate equal
to half of their deadline and computation cost values
respectively. But the tasks with odd clock cycle value of their
deadline had pseudo deadline value equal to the ceil value of
deadline. Now if computation cost had even value the half
execution rate was set to half of computation cost else to the
ceil value of the computation time. Now the tasks with highest
values for CPU Utilization Rate were scheduled but if two
tasks had equal utilization rate then the task with lower
deadline value was given the higher priority. The tasks under
UPD have more process migration than RMZLPD but the
consideration to meet the deadline of any task is much greater
than the time taken in context switching so we have not
considered this aspect of the task.

 Figure 1 and figure 2 show the results of our simulation in the
range (0.4 , 1]. Figure 1 shows the results of our simulation for
success ratio. It shows a better success rate over its
predecessors RMZL, LPRMZL and RMZLPD. As in figure 1
we can see the success ratio UPD is near the threshold mark
proving its high success ratio for the scheduled tasks. The
success rate of UPD results show a 100 % in the range of CPU
utilization rate value (0 ,0.9) proving it to be an algorithm with
high success ratio. The results show that the algorithms
RMZLPD and UPD have a much better success rate than
RMZL and UPD.

Success rate is the ratio of tasks can have been scheduled by
the algorithm to the total number of tasks submitted to the

UPD- Static Priority Real-Time Algorithm for Multiprocessors based on RM 15

Advances in Computer Science and Information Technology (ACSIT)
Print ISSN: 2393-9907; Online ISSN: 2393-9915; Volume 2, Number 11; April-June, 2015

processors. An algorithm with success rate can be considered
as more optimal algorithm. Schedulability is the capacity of an
algorithm to finish the tasks within their constrained deadline
clock cycles. The two factors success ratio and schedulability
of any algorithm are the best parameters to test the fitness of
any algorithm on any set of task set.

Similarly figure 2 shows the results of simulation with
schedulability are highly encouraging over its predecessors.
The graph for RMZLPD and RMZL shows a dip for CPU
utilization rate values for overloaded conditions but UPD
performs better than it. The graph for UPD shows better
results which is a better sign for future developments in the
algorithm. The UPD algorithm under any circumstance serves
its purpose of scheduling high priority tasks even if it might
miss the deadline for low priority tasks.

7. CONCLUSION AND FUTURE DIRECTION

The simulation results of UPD show its high success rate and
an enhancement over its predecessors in schedulability rate.
UPD can calculate pseudo deadline and half execution rate for
all the tasks submitted to it unlike RMZLPD which can
calculate only for even values of the tasks. UPD can achieve
high amount of parallelism and can be an optimal algorithm
for priority driven soft real time systems where the deadline of
low priority tasks can be missed at the expense of scheduling
high priority tasks. UPD has a dynamic approach also, as it
can be seen it can assign high priority to tasks that have zero
laxity. The algorithm is however complex and requires lots of
computations but instead has a way better result than its
predecessors.

The results of simulation show a big gap for schedulability
owing to the task complexity and assumptions in our
approach. We plan to further enhance this algorithm by taking
other real time factors into consideration and analyze its
schedulability by RTA [4]. We also intend to remove the

process migration problem in our next algorithm to make less
cumbersome for limited resource systems.

REFERENCES

[1] Yanai K. Yoo M. and Yokoyama T. A Proposal of Real-Time
Scheduling Algorithm based on RMZL and Schedulability
Analysis. 17th Asia Pacific Symposium on Intelligent and
Evolutionary Systems, 2013 ; 9-14

[2] Dhall, S.K. and Liu, C.L. On a real-time scheduling problem.
Operations Research, 1978 ; 127-140

[3] Jie, L. Ruifeng, G. and Zhixiang, S. The Research of Scheduling
Algorithms in Real-time System. International Conference on
Computer and Communication Technologies in Agriculture
Engineering, 2010 ;333-336

[4] Bertogna, M. and Cirinei, M. Response-Time Analysis for
globally scheduled Symmetric Multiprocessor Platforms. 28th
IEEE International Real-Time Symposium,2007 ; 149-158

[5] Ramamurthy, S. and Moir, M. Static-Priority Scheduling on
Multiprocessors . IEEE 21st Real Time Symposium ,2000; 69-78

[6] Lehoczky, J. Sha, L. and Ding, Y. The Rate Monotonic
Scheduling Algorithm: Exact Characterization and Average Case
Behaviour. In the proceedings of the10th IEEE Real Time
Systems Symposium, 1989 ;166-171

[7] Harbour, M.G. Klein M.H. and Lehoczky. Fixed Priority
Scheduling of Periodic Tasks With varying Execution Priority .
IEEE 12th Real-Time systems Symposium,1991 ;116-128

[8] Bums, A. and Wellings, J. Dual Priority Assignment :A Practical
Method for Increasing Processor Utilization . IEEE 14th Real-
Time Systems Symposium , 1993; 48-53

[9] Lee, S. K. On-line Multiprocessor Scheduling Algorithms for
Real-Time Tasks. TENCON '94. IEEE Region 10's Ninth Annual
International Conference. Theme: Frontiers of Computer
Technology, 1994 ; 607-611

[10] Kato, S. Takeda, A. and Yamasaki, N. Global Rate-Monotonic
Scheduling With Priority Promotion. IPSJ Transactions on
Advanced Computing System, 2008 ; 64-74

